Concentration of the Spectral Measure of Large Wishart Matrices with Dependent Entries

نویسندگان

  • ADITYANAND GUNTUBOYINA
  • HANNES LEEB
چکیده

We derive concentration inequalities for the spectral measure of large random matrices, allowing for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices, but general symmetric random matrices are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 81 0 . 27 53 v 1 [ m at h . ST ] 1 5 O ct 2 00 8 Concentration of the spectral measure of large Wishart matrices with dependent entries

We derive concentration inequalities for the spectral measure of large random matrices, allowing for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices, but general symmetric random matrices are also considered.

متن کامل

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

Concentration of the Spectral Measure for Large Random Matrices with Stable Entries

We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matrices, such as the largest eigenvalue or the largest singular value. AMS 2000 Subject Classification: 60E07, 60F10, 15A42, 15A52

متن کامل

Entropic CLT and phase transition in high-dimensional Wishart matrices

We consider high dimensional Wishart matrices XX⊤ where the entries of X ∈ Rn×d are i.i.d. from a log-concave distribution. We prove an information theoretic phase transition: such matrices are close in total variation distance to the corresponding Gaussian ensemble if and only if d is much larger than n3. Our proof is entropy-based, making use of the chain rule for relative entropy along with ...

متن کامل

The Spectral Laws of Hermitian Block-matrices with Large Random Blocks

We are going to study the limiting spectral measure of fixed dimensional Hermitian block-matrices with large dimensional Wigner blocks. We are going also to identify the limiting spectral measure when the Hermitian block-structure is Circulant. Using the limiting spectral measure of a Hermitian Circulant block-matrix we will show that the spectral measure of a Wigner matrix with k−weakly depend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009